| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 8052584 | 1519406 | 2015 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Model trees and sequential minimal optimization based support vector machine models for estimating minimum surface roughness value
ترجمه فارسی عنوان
درختان مدل و مدل های کمکی بر پایه حداقل برتری بهینه بر اساس مدل برآورد حداقل مقدار خلوص سطح
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
چکیده انگلیسی
Average surface roughness value (Ra) is an important measure of the quality of a machined work piece. Lower the Ra value, the higher is the work piece quality and vice versa. It is therefore desirable to develop mathematical models that can predict the minimal Ra value and the associated machining conditions that can lead to this value. In this paper, real experimental data from an end milling process is used to develop models for predicating minimum Ra value. Two techniques, model tree and sequential minimal optimization based support vector machine, which have not been used before to model surface roughness, were applied to the training data to build prediction models. The developed models were then applied to the test data to determine minimum Ra value. Results indicate that both techniques reduced the minimum Ra value of experimental data by 4.2% and 2.1% respectively. Model trees are found to be better than other approaches in predicting minimum Ra value.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 39, Issues 3â4, February 2015, Pages 1119-1136
Journal: Applied Mathematical Modelling - Volume 39, Issues 3â4, February 2015, Pages 1119-1136
نویسندگان
Sarosh Hashmi, Sami M. Halawani, Omar M. Barukab, Amir Ahmad,
