کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8080479 1521553 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Radon-222 related influence on ambient gamma dose
ترجمه فارسی عنوان
تأثیر مربوط به رادون-222 بر دوز گامای محیط
کلمات کلیدی
دوز گامای محیطی، رادون 222، بارش، مدل ها، امکانات هسته ای، اورژانس رادیولوژیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی هسته ای و مهندسی
چکیده انگلیسی
Ambient gamma dose, radon, and rainfall have been monitored in southern Bucharest, Romania, from 2010 to 2016. The seasonal cycle of background ambient gamma dose peaked between July and October (100-105 nSv h−1), with minimum values in February (75-80 nSv h−1), the time of maximum snow cover. Based on 10 m a.g.l. radon concentrations, the ambient gamma dose increased by around 1 nSv h−1 for every 5 Bq m−3 increase in radon. Radon variability attributable to diurnal changes in atmospheric mixing contributed less than 15 nSv h−1 to the overall variability in ambient gamma dose, a factor of 4 more than synoptic timescale changes in air mass fetch. By contrast, precipitation-related enhancements of the ambient gamma dose were 15-80 nSv h−1. To facilitate routine analysis, and account in part for occasional equipment failure, an automated method for identifying precipitation spikes in the ambient gamma dose was developed. Lastly, a simple model for predicting rainfall-related enhancement of the ambient gamma dose is tested against rainfall observations from events of contrasting duration and intensity. Results are also compared with those from previously published models of simple and complex formulation. Generally, the model performed very well. When simulations underestimated observations the absolute difference was typically less than the natural variability in ambient gamma dose arising from atmospheric mixing influences. Consequently, combined use of the automated event detection method and the simple model of this study could enable the ambient gamma dose “attention limit” (which indicates a potential radiological emergency) to be reduced from 200 to 400% above background to 25-50%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Radioactivity - Volume 189, September 2018, Pages 67-78
نویسندگان
, , , , , ,