کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8340362 1541228 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
RNA FISH for detecting expanded repeats in human diseases
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
RNA FISH for detecting expanded repeats in human diseases
چکیده انگلیسی
RNA fluorescence in situ hybridization (FISH) is a widely used technique for detecting transcripts in fixed cells and tissues. Many variants of RNA FISH have been proposed to increase signal strength, resolution and target specificity. The current variants of this technique facilitate the detection of the subcellular localization of transcripts at a single molecule level. Among the applications of RNA FISH are studies on nuclear RNA foci in diseases resulting from the expansion of tri-, tetra-, penta- and hexanucleotide repeats present in different single genes. The partial or complete retention of mutant transcripts forming RNA aggregates within the nucleoplasm has been shown in multiple cellular disease models and in the tissues of patients affected with these atypical mutations. Relevant diseases include, among others, myotonic dystrophy type 1 (DM1) with CUG repeats, Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) with CAG repeats, fragile X-associated tremor/ataxia syndrome (FXTAS) with CGG repeats, myotonic dystrophy type 2 (DM2) with CCUG repeats, amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) with GGGGCC repeats and spinocerebellar ataxia type 32 (SCA32) with GGCCUG. In this article, we summarize the results obtained with FISH to examine RNA nuclear inclusions. We provide a detailed protocol for detecting RNAs containing expanded CAG and CUG repeats in different cellular models, including fibroblasts, lymphoblasts, induced pluripotent stem cells and murine and human neuronal progenitors. We also present the results of the first single-molecule FISH application in a cellular model of polyglutamine disease.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Methods - Volume 98, 1 April 2016, Pages 115-123
نویسندگان
, ,