کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8545995 1561687 2018 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Antifouling processes and toxicity effects of antifouling paints on marine environment. A review
ترجمه فارسی عنوان
فرایندهای ضد انعقاد و اثرات سمی رنگهای ضد انحلال بر محیط زیست دریایی. بازنگری
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
چکیده انگلیسی
The production infrastructure in aquaculture invariably is a complex assortment of submerged components with cages, nets, floats and ropes. Cages are generally made from polyamide or high density polyethylene (PEHD). All of these structures serve as surfaces for biofouling. However, cage nets and supporting infrastructure offer fouling organisms thousands of square meters of multifilament netting. That's why, before immersing them in seawater, they should be coated with an antifouling agent. It helps to prevent net occlusion and to increase its lifespan. Biofouling in marine aquaculture is a specific problem and has three main negative effects. It causes net occlusion and so restricts water and oxygen exchange. Besides, the low dissolved oxygen levels from poor water exchange increases the stress levels of fish, lowers immunity and increases vulnerability to disease. Also, the extra weight imposed by fouling causes cage deformation and structural fatigue. The maintenance and loss of equipment cause the increase of production costs for the industry. Biocides are chemical substances that can prohibit or kill microorganisms responsible for biofouling. The expansion of the aquaculture industry requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. Unfortunately, the use of biocides in the aquatic environment has proved to be harmful as it has toxic effects on the marine environment. The most commonly used biocides in antifouling paints are Tributyltin (TBT), Chlorothalonil, Dichlofluanid, Sea-Nine 211, Diuron, Irgarol 1051 and Zinc Pyrithione. Restrictions were imposed on the use of TBT, that's why organic booster biocides were recently introduced. The replacement products are generally based on copper metal oxides and organic biocides. This paper provides an overview of the effects of antifouling biocides on aquatic organisms. It will focus on the eight booster biocides in common use, despite little data are available for some of them. Toxicity values and effects of these antifoulants will also be mentioned for different species of fish, crustaceans, invertebrates and algae.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Toxicology and Pharmacology - Volume 57, January 2018, Pages 115-130
نویسندگان
, , , ,