کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
869250 | 909826 | 2007 | 7 صفحه PDF | دانلود رایگان |

Microfluidic biofuel cells exploit the lack of convective mixing at low Reynolds number to eliminate the need for a physical membrane to separate fuel from oxidant. This paper demonstrates how the length and spacing of electrodes within a microchannel, and thus thickness of the diffusion layer, affects the performance of a microfluidic biofuel cell. It was found that splitting a single electrode into two (or more) smaller electrodes and separating them by a distance equal to three times their length prevents the continuous increase in thickness of a diffusion layer. This change results in a 25% increase in maximum power density compared to a single electrode device with identical electroactive area. Furthermore, we found that the maximum current density of a microfluidic biofuel cell operated with different electrode configurations (i.e., length of cathode) closely matches that predicted by theory.
Journal: Biosensors and Bioelectronics - Volume 22, Issue 6, 15 January 2007, Pages 941–947