کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
869922 909842 2008 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks
چکیده انگلیسی

This work describes the resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy (EIS) and artificial neural networks (ANNs) for the processing of data. Pseudomonas aeruginosa, Staphylococcus aureus and Saccharomyces cerevisiae were chosen as models for Gram-negative bacteria, Gram-positive bacteria and yeasts, respectively. In this study, best results were obtained when entering the imaginary component of the impedance at each frequency (strongly related to the capacitive elements of the electrical equivalent circuit) into backpropagation neural networks made up by two hidden layers. The optimal configuration of these layers respectively used the radbas and the logsig transfer functions with 4 or 6 neurons in the first hidden layer and 10 neurons in the second one. In all cases, good prediction ability was obtained with correlation coefficients better than 0.989 when comparing the predicted and the expected values for a set of six external test samples not used in the training process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 24, Issue 4, 1 December 2008, Pages 958–962
نویسندگان
, , , , , ,