کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8823168 | 1610070 | 2018 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Deep Learning in Radiology: Does One Size Fit All?
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم پزشکی و سلامت
پزشکی و دندانپزشکی
رادیولوژی و تصویربرداری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Deep learning (DL) is a popular method that is used to perform many important tasks in radiology and medical imaging. Some forms of DL are able to accurately segment organs (essentially, trace the boundaries, enabling volume measurements or calculation of other properties). Other DL networks are able to predict important properties from regions of an image-for instance, whether something is malignant, molecular markers for tissue in a region, even prognostic markers. DL is easier to train than traditional machine learning methods, but requires more data and much more care in analyzing results. It will automatically find the features of importance, but understanding what those features are can be a challenge. This article describes the basic concepts of DL systems and some of the traps that exist in building DL systems and how to identify those traps.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the American College of Radiology - Volume 15, Issue 3, Part B, March 2018, Pages 521-526
Journal: Journal of the American College of Radiology - Volume 15, Issue 3, Part B, March 2018, Pages 521-526
نویسندگان
Bradley J. MD, PhD, Panagiotis PhD, Timothy L. PhD, Zeynettin PhD, Kenneth PhD, Alexander D. BS,