کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8872867 1622874 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of applied irrigation depths at farm level using artificial intelligence techniques
ترجمه فارسی عنوان
پیش بینی اعمال آبیاری اعمال شده در سطح مزرعه با استفاده از تکنیک های هوش مصنوعی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
چکیده انگلیسی
Irrigation water demand is highly variable and depends on farmer behaviour, which affects the performance of irrigation networks. The irrigation depth applied to each farm also depends on farmer behaviour and is affected by precise and imprecise variables. In this work, a hybrid methodology combining artificial neural networks, fuzzy logic and genetic algorithms was developed to model farmer behaviour and forecast the daily irrigation depth used by each farmer. The models were tested in a real irrigation district located in southwest Spain. Three optimal models for the main crops in the irrigation district were obtained. The representability (R2) and accuracy of the predictions (standard error prediction, SEP) were 0.72, 0.87 and 0.72; and 22.20%, 9.80% and 23.42%, for rice, maize and tomato crop models, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural Water Management - Volume 206, 30 July 2018, Pages 229-240
نویسندگان
, , , ,