کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8894740 1629893 2018 45 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Vertical variability of arsenic concentrations under the control of iron-sulfur-arsenic interactions in reducing aquifer systems
ترجمه فارسی عنوان
تغییرات عمودی غلظت آرسنیک تحت کنترل آلودگی آهن-گوگرد و آرسنیک در کاهش سیستم های
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی
High spatial variability of arsenic (As) concentration in geogenic As-contaminated groundwater has been commonly observed worldwide, but the underlying reasons remain not well understood. Selecting a sulfate-containing, As-affected aquifer at the Datong Basin, northern China as the study area and combining hydrogeochemical investigation and sediment extraction with reactive transport modeling, this work elucidated the roles of Fe-S-As interactions in regulating the vertical variation of As concentration in the groundwater. Dissolved As concentration varied between 0.05 and 18 μmol/L, but generally increased in the depth of 20-25 m and then decreased in 25-30 m. The high-As groundwater contained low Fe(II) (<0.007 mmol/L) and up to 15 μmol/L sulfide, in contrary to the S/SE Asian deltas/floodplains where high Fe(II) and As jointly occur in the groundwater devoid of sulfate reduction. The reductive dissolution of As-bearing Fe(III) oxides coupled to the degradation of organic matter with an estimated maximum rate of 0.22 mmol C/L/yr, mainly accounted for the depth-dependent increase of As concentration in the upper part of the shallow aquifer (<25 m deep). However, the decreasing reactivity of Fe(III) oxides together with the increase of pH over depth rendered the majority of electrons being transferred to sulfate reduction. The Fe(II) sulfides formed as a consequence not only helped to restrict the build-up of Fe(II) in the groundwater but also probably co-precipitated As to prompt As decrease in the depth of 25-30 m. Arsenite adsorbed on remaining Fe(III) oxides and newly-formed Fe(II) sulfides is another important pool of As in the aquifer, which varies in response to the extents of Fe(III)-oxide and sulfate reduction and consequently alters As distribution coefficient between the solid and the aqueous phases. This study highlights the importance of coupled geochemical cycling of Fe, S and As for As mobilization and reveals how it regulates As partitioning between groundwater and sediments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 561, June 2018, Pages 200-210
نویسندگان
, , , , , ,