کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
89644 | 159349 | 2008 | 8 صفحه PDF | دانلود رایگان |
Understanding of the effects of isolated plants with different morphologies on water runoff and soil loss is important for vegetation restoration in arid environments. We selected three representative species (Artemisia gmelinii; Ajania potaninii; Pulicaria chrysantha) of the dry-warm river valley of the upper reach of Minjiang River, SW China to examine these effects. Twenty-five runoff events were recorded using runoff plots at micro scale (<40 cm × 40 cm) on a south facing slope from July through October 2006. A. potaninii had sparse canopy, the smallest leaf area (0.49 ± 0.25 cm2) and specific leaf area (67.8 ± 16.5 cm2/g), and the highest leaf relative water content (27.1 ± 4.4%). It is the most resistant to drought stress. A. gmelinii was the shortest, and had relatively small leaf area (0.55 ± 0.50 cm2) and the densest canopy. P. chrysantha had the greatest leaf area (1.41 ± 0.49 cm2) and most extended canopy (4450 ± 1646 cm2). Dead branches and leaves of A. gmelinii and P. chrysantha commonly fall and collect on the soil surface. Thus they had greater improvements on soil porosity and soil water content, and higher effectiveness in controlling soil loss. However, A. gmelinii had more stable effectiveness in controlling runoff as compared with P. chrysantha. The characteristics such as relatively small leaf area but low height and dense canopy might be one criterion for selecting species to improve soil properties and controlling runoff and soil loss. Differences in soil environments, and runoff and soil loss production capacity for micro-surfaces regulates water and materials redistribution, which emphasizes the importance in designing vegetation restoration pattern.
Journal: Forest Ecology and Management - Volume 256, Issue 4, 10 August 2008, Pages 656–663