کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9452113 | 1307862 | 2005 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
شیمی زیست محیطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The poor mobility of organic pollutants in contaminated sites frequently results in slow remediation processes. Organics, especially hydrophobic compounds, are generally retained strongly in soil matrix as a result of sorption, sequestration, or even formation into non-aqueous-phase liquids and their mobility is thus greatly reduced. The objective of this study was to evaluate the feasibility of using non-uniform electrokinetic transport processes to enhance the mobility of organic pollutants in unsaturated soils with no injection reagents. Phenol and 2,4-dichlorophenol (2,4-DCP), and kaolin and a natural sandy loam soil were selected as model organics and soils, respectively. The results showed that non-uniform electrokinetics can accelerate the desorption and movement of phenol and 2,4-DCP in unsaturated soils. Electromigration and electroosmotic flow were the main driving forces, and their role in the mobilization of phenol and 2,4-DCP varied with soil pH. The movement of 2,4-DCP in the sandy loam towards the anode (about 1.0 cm dâ1 Vâ1) was 1.0-1.5 cm dâ1 Vâ1 slower than that in the kaolin soil, but about 0.5 cm dâ1 Vâ1 greater than that of phenol in the sandy loam. When the sandy loam was adjusted to pH 9.3, the movement of phenol and 2,4-DCP towards the anode was about twice and five times faster than that at pH 7.7, respectively. The results also demonstrated that the movement of phenol and 2,4-DCP in soils can be easily controlled by regulating the operational mode of electric field. It is believed that non-uniform electrokinetics has the potential for practical application to in situ remediation of organics-contaminated sites.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 59, Issue 9, June 2005, Pages 1289-1298
Journal: Chemosphere - Volume 59, Issue 9, June 2005, Pages 1289-1298
نویسندگان
Qishi Luo, Xihui Zhang, Hui Wang, Yi Qian,