کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
9471078 | 1320064 | 2005 | 17 صفحه PDF | سفارش دهید | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spreading speeds as slowest wave speeds for cooperative systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well known that in many scalar models for the spread of a fitter phenotype or species into the territory of a less fit one, the asymptotic spreading speed can be characterized as the lowest speed of a suitable family of traveling waves of the model. Despite a general belief that multi-species (vector) models have the same property, we are unaware of any proof to support this belief. The present work establishes this result for a class of multi-species model of a kind studied by Lui [Biological growth and spread modeled by systems of recursions. I: Mathematical theory, Math. Biosci. 93 (1989) 269] and generalized by the authors [Weinberger et al., Analysis of the linear conjecture for spread in cooperative models, J. Math. Biol. 45 (2002) 183; Lewis et al., Spreading speeds and the linear conjecture for two-species competition models, J. Math. Biol. 45 (2002) 219]. Lui showed the existence of a single spreading speed câ for all species. For the systems in the two aforementioned studies by the authors, which include related continuous-time models such as reaction-diffusion systems, as well as some standard competition models, it sometimes happens that different species spread at different rates, so that there are a slowest speed câ and a fastest speed cfâ. It is shown here that, for a large class of such multi-species systems, the slowest spreading speed câ is always characterized as the slowest speed of a class of traveling wave solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical Biosciences - Volume 196, Issue 1, July 2005, Pages 82-98
Journal: Mathematical Biosciences - Volume 196, Issue 1, July 2005, Pages 82-98
نویسندگان
Bingtuan Li, Hans F. Weinberger, Mark A. Lewis,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت