کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9491243 1630175 2005 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results
چکیده انگلیسی
A spatially distributed energy balance snowmelt model has been applied to a 2150 km2 drainage basin in the Boise River, ID, USA, to simulate the accumulation and melt of the snowpack for the years 1998-2000. The simulation was run at a 3 h time step and a spatial resolution of 250 m. Spatial field time series of meteorological input data were obtained using various spatial interpolation and simulation methods. The variables include precipitation, air temperature, dew point temperature, wind speed, and solar and thermal radiation. The goal was to use readily available data and relatively straightforward, yet physically meaningful, methods to develop the spatial fields. With these meteorological fields as input, the simulated fields of snow water equivalent, snow depth, and snow covered area reproduce observations very well. The simulated snowmelt fields are also used as input to a spatially distributed hydrologic model to estimate streamflow. This gives an additional verification of the snowmelt modelling results as well as provides a linkage of the two models to generate hydrographs for water management information. This project is a demonstration of spatially distributed energy balance snowmelt modelling in a large mountainous catchment using data from existing meteorological networks. This capability then suggests the potential for developing new spatial hydrologic informational products and the possibility of improving the accuracy of the prediction of hydrologic processes for water and natural resources management.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 315, Issues 1–4, 10 December 2005, Pages 126-153
نویسندگان
, ,