کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9491435 | 1630189 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Over the last decades, several data-driven techniques have been applied to model the rainfall-discharge dynamics of catchments. Among these techniques are fuzzy rule-based models, which attempt to describe the catchment response to rainfall input through fuzzy relationships. In this paper, we demonstrate three different methods for constructing fuzzy rule-based models of the Takagi-Sugeno type relating rainfall to catchment discharge. They correspond to the grid partitioning, subtractive clustering, and Gustafson-Kessel (GK) clustering identification methods. The data set used to parametrize and validate the models consists of hourly precipitation and discharge records. The models are parametrized using a 1-year identification data set and are then applied to a 4-year data set. Although the models show a similar performance, the best results are obtained for the GK method. A real-time flood forecasting algorithm is then developed, in which discharge measurements are assimilated into the model at either an hourly or a daily time step. The results suggest that the GK method can potentially be used as an operational flood forecasting tool with a low computational cost.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 302, Issues 1â4, 1 February 2005, Pages 173-186
Journal: Journal of Hydrology - Volume 302, Issues 1â4, 1 February 2005, Pages 173-186
نویسندگان
Hilde Vernieuwe, Olga Georgieva, Bernard De Baets, Valentijn R.N. Pauwels, Niko E.C. Verhoest, François P. De Troch,