کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9749036 | 1493799 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Application of artificial neural networks for prediction of retention factors of triazine herbicides in reversed-phase liquid chromatography
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper a quantitative structure-retention relationship (QSRR) method is used to model reversed-phase high-performance liquid chromatography (HPLC) behaviour of a series of triazine herbicides and their metabolites. Accurate description of the retention factors in terms of four descriptors related to the analytes and to the mobile phase is achieved by means of an artificial neural network (ANN). For comparison, a QSRR model is derived by multilinear regression (MLR). Validation of the two models shows a better ability in prediction of the ANN as compared with the MLR method. A solid-phase extraction (SPE) procedure allowing the simultaneous determination of the five triazinic compounds in groundwater analysis is also presented. The observed recoveries from water samples range between 85 and 100% for ng/ml concentration levels of all analytes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Chromatography A - Volume 1076, Issues 1â2, 27 May 2005, Pages 163-169
Journal: Journal of Chromatography A - Volume 1076, Issues 1â2, 27 May 2005, Pages 163-169
نویسندگان
Fabrizio Ruggieri, Angelo Antonio D'Archivio, Giuseppe Carlucci, Pietro Mazzeo,