کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10162732 1114358 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Molecular Dynamics Simulation of Amorphous Indomethacin-Poly(Vinylpyrrolidone) Glasses: Solubility and Hydrogen Bonding Interactions
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی اکتشاف دارویی
پیش نمایش صفحه اول مقاله
Molecular Dynamics Simulation of Amorphous Indomethacin-Poly(Vinylpyrrolidone) Glasses: Solubility and Hydrogen Bonding Interactions
چکیده انگلیسی
Amorphous drug dispersions are frequently employed to enhance solubility and dissolution of poorly water-soluble drugs and thereby increase their oral bioavailability. Because these systems are metastable, phase separation of the amorphous components and subsequent drug crystallization may occur during storage. Computational methods to determine the likelihood of these events would be very valuable, if their reliability could be validated. This study investigates amorphous systems of indomethacin (IMC) in poly(vinylpyrrolidone) (PVP) and their molecular interactions by means of molecular dynamics (MD) simulations. IMC and PVP molecules were constructed using X-ray diffraction data, and force-field parameters were assigned by analogy with similar groups in Amber-ff03. Five assemblies varying in PVP and IMC composition were equilibrated in their molten states then cooled at a rate of 0.03 K/ps to generate amorphous glasses. Prolonged aging dynamic runs (100 ns) at 298 K and 1 bar were then carried out, from which solubility parameters, the Flory-Huggins interaction parameter, and associated hydrogen bonding properties were obtained. Calculated glass transition temperature (Tg) values were higher than experimental results because of the faster cooling rates in MD simulations. Molecular mobility as characterized by atomic fluctuations was substantially reduced below the Tg with IMC-PVP systems exhibiting lower mobilities than that found in amorphous IMC, consistent with the antiplasticizing effect of PVP. The number of IMC-IMC hydrogen bonds (HBs) formed per IMC molecule was substantially lower in IMC-PVP mixtures, particularly the fractions of IMC molecules involved in two or three HBs with other IMC molecules that may be potential precursors for crystal growth. The loss of HBs between IMC molecules in the presence of PVP was largely compensated for by the formation of IMC-PVP HBs. The difference (6.5 MPa1/2) between the solubility parameters in amorphous IMC (25.5 MPa1/2) and PVP (19.0 MPa1/2) suggests a small, positive free energy of mixing, although it is close to the criterion for miscibility (< 7 MPa1/2). In contrast to the solubility-parameter method, the calculated Flory-Huggins interaction parameter (− 0.61 ± 0.25), which takes into account the IMC-PVP interaction energy, predicts complete miscibility at all PVP compositions, in agreement with experimental observations. These results from MD simulations were combined with experimental values for the crystalline γ-polymorph of IMC and amorphous IMC to estimate the solubility of IMC in amorphous PVP dispersions and the theoretical enhancement in the aqueous solubility of IMC molecularly dispersed in PVP at various volume fractions. © 2012Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:876-891, 2013
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pharmaceutical Sciences - Volume 102, Issue 3, March 2013, Pages 876-891
نویسندگان
, ,