کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11012899 | 1797859 | 2019 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Moments of the error term in the Sato-Tate law for elliptic curves
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We derive new bounds for moments of the error in the Sato-Tate law over families of elliptic curves. Our estimates are stronger than those obtained in [4] and [5] for the first and second moment, but this comes at the cost of larger ranges of averaging. As applications, we deduce new almost-all results for the said errors and a conditional Central Limit Theorem on the distribution of these errors. Our method is different from those used in the above-mentioned papers and builds on recent work by the second-named author and K. Sinha [21] who derived a Central Limit Theorem on the distribution of the errors in the Sato-Tate law for families of cusp forms for the full modular group. In addition, identities by Birch and Melzak play a crucial rule in this paper. Birch's identities connect moments of coefficients of Hasse-Weil L-functions for elliptic curves with the Kronecker class number and further with traces of Hecke operators. Melzak's identity is combinatorial in nature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 194, January 2019, Pages 44-82
Journal: Journal of Number Theory - Volume 194, January 2019, Pages 44-82
نویسندگان
Stephan Baier, Neha Prabhu,