کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1163830 1490970 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using variable combination population analysis for variable selection in multivariate calibration
ترجمه فارسی عنوان
با استفاده از تجزیه و تحلیل جمعیت ترکیبی متغیر برای انتخاب متغیر در کالیبراسیون چند متغیری
کلمات کلیدی
حداقل مربعات جزئی، ترکیب متغیر، انتخاب متغیر، تجزیه و تحلیل جمعیت مدل، به طور مؤثر کاهش عملکرد کالیبراسیون چند متغیره
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی


• Uses a novel sampling strategy that considers the interaction effect among variables.
• Utilizes model population analysis to explore the useful information from a population of models.
• Employs exponentially decreasing function to iteratively filter the variables and shrink the variable space.
• Performs well when compared with CARS, GA–PLS, MC-UVE-PLS and IRIV.

Variable (wavelength or feature) selection techniques have become a critical step for the analysis of datasets with high number of variables and relatively few samples. In this study, a novel variable selection strategy, variable combination population analysis (VCPA), was proposed. This strategy consists of two crucial procedures. First, the exponentially decreasing function (EDF), which is the simple and effective principle of ‘survival of the fittest’ from Darwin’s natural evolution theory, is employed to determine the number of variables to keep and continuously shrink the variable space. Second, in each EDF run, binary matrix sampling (BMS) strategy that gives each variable the same chance to be selected and generates different variable combinations, is used to produce a population of subsets to construct a population of sub-models. Then, model population analysis (MPA) is employed to find the variable subsets with the lower root mean squares error of cross validation (RMSECV). The frequency of each variable appearing in the best 10% sub-models is computed. The higher the frequency is, the more important the variable is. The performance of the proposed procedure was investigated using three real NIR datasets. The results indicate that VCPA is a good variable selection strategy when compared with four high performing variable selection methods: genetic algorithm–partial least squares (GA–PLS), Monte Carlo uninformative variable elimination by PLS (MC-UVE-PLS), competitive adaptive reweighted sampling (CARS) and iteratively retains informative variables (IRIV). The MATLAB source code of VCPA is available for academic research on the website: http://www.mathworks.com/matlabcentral/fileexchange/authors/498750.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 862, 3 March 2015, Pages 14–23
نویسندگان
, , , , , , , , ,