کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1164082 1490974 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A consensus successive projections algorithm – multiple linear regression method for analyzing near infrared spectra
ترجمه فارسی عنوان
یک الگوریتم پیش بینی های متوالی پیوندی؟ روش رگرسیون خطی چندگانه برای تجزیه و تحلیل طیف های نزدیک به مادون قرمز
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی


• The combination of consensus strategy and SPA-MLR method is presented.
• The proposed method was evaluated using two public near-infrared data sets.
• Competitive results compared with PLS and SPA-MLR.
• Improvements for SPA-MLR method are shown.

The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named “consensus SPA-MLR” (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 858, 9 February 2015, Pages 16–23
نویسندگان
, , , , , ,