کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1178657 962708 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tuning amyloidogenic conformations through cosolvents and hydrostatic pressure: When the soft matter becomes even softer
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Tuning amyloidogenic conformations through cosolvents and hydrostatic pressure: When the soft matter becomes even softer
چکیده انگلیسی

Compact packing, burial of hydrophobic side-chains, and low free energy levels of folded conformations contribute to stability of native proteins. Essentially, the same factors are implicated in an even higher stability of mature amyloid fibrils. Although both native insulin and insulin amyloid are resistant to high pressure and influence of cosolvents, intermediate aggregation-prone conformations are susceptible to either condition. Consequently, insulin fibrillation may be tuned under hydrostatic pressure or – through cosolvents and cosolutes – by preferential exclusion or binding. Paradoxically, under high pressure, which generally disfavors aggregation of insulin, an alternative “low-volume” aggregation pathway, which leads to unique circular amyloid is permitted. Likewise, cosolvents are capable of preventing, or altering amyloidogenesis of insulin. As a result of cosolvent-induced perturbation, distinct conformational variants of fibrils are formed. Such variants, when used as templates for seeding daughter generations, reproduce initial folding patterns regardless of environmental biases. By the close analogy, this suggests that the “prion strains” phenomenon may mirror a generic, common feature in amyloids. The susceptibility of amyloidogenic conformations to pressure and cosolvents is likely to arise from their “frustration”, as unfolding results in less-densely packed side-chains, void volumes, and exposure of hydrophobic groups. The effects of cosolvents and pressure are discussed in the context of studies on other amyloidogenic protein models, amyloid polymorphism, and “strains”.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics - Volume 1764, Issue 3, March 2006, Pages 470–480
نویسندگان
,