کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
1179440 1491529 2016 7 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
The equivalence of partial least squares and principal component regression in the sufficient dimension reduction framework
ترجمه فارسی عنوان
هم ارزیابی حداقل مربعات جزئی و رگرسیون مولفه اصلی در چارچوب کاهش کافی ابعاد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی


• We establish the relationship between PCR and SDR.
• Based on the theory of SDR, we prove the equivalence of PCR and PLS.
• We define some indexes to evaluate the equivalence of PLS and PCR.

Partial least squares (PLS) and principal component regression (PCR) are two widely used techniques for dimension reduction in chemometrics. However, the relationship between PLS and PCR is not entirely understood. In this paper, we introduce the idea of sufficient dimension reduction (SDR) to chemometrics, and show that PLS and PCR are methods of SDR. Furthermore, this paper shows that these two methods are equivalent within the framework of SDR which means that there is no theoretical advantage of PLS over PCR in terms of prediction performance. The above conclusion is supported by the results of a simulated dataset and three real datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 150, 15 January 2016, Pages 58–64
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت