کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
13420534 | 1841544 | 2020 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A series of forecasting models for seismic evaluation of dams based on ground motion meta-features
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
مهندسی ژئوتکنیک و زمین شناسی مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper discusses the application of six different machine learning techniques on forecasting the structural behavior of gravity dams. Various time-, frequency-, and intensity-dependent characteristics are extracted from ground motion signals and used in machine learning. A large set of about 2000 real ground motions are used, each includes about 35 meta-features. The major outcome of this study is to show the applicability of meta-modeling-based UQ in seismic safety evaluation of dams. As an intermediary result, the advantages of different machine learning algorithms, as well as meta-feature selection possibility is discussed for the current dataset. This paper proposes a feasibility study to reduce the computational costs in UQ of large-scale infra-structural systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Structures - Volume 203, 15 January 2020, 109657
Journal: Engineering Structures - Volume 203, 15 January 2020, 109657
نویسندگان
Mohammad Amin Hariri-Ardebili, Sasan Barak,