کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
13420534 1841544 2020 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A series of forecasting models for seismic evaluation of dams based on ground motion meta-features
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
پیش نمایش صفحه اول مقاله
A series of forecasting models for seismic evaluation of dams based on ground motion meta-features
چکیده انگلیسی
This paper discusses the application of six different machine learning techniques on forecasting the structural behavior of gravity dams. Various time-, frequency-, and intensity-dependent characteristics are extracted from ground motion signals and used in machine learning. A large set of about 2000 real ground motions are used, each includes about 35 meta-features. The major outcome of this study is to show the applicability of meta-modeling-based UQ in seismic safety evaluation of dams. As an intermediary result, the advantages of different machine learning algorithms, as well as meta-feature selection possibility is discussed for the current dataset. This paper proposes a feasibility study to reduce the computational costs in UQ of large-scale infra-structural systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Structures - Volume 203, 15 January 2020, 109657
نویسندگان
, ,