کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1401149 | 1501697 | 2016 | 10 صفحه PDF | دانلود رایگان |
![عکس صفحه اول مقاله: Spectroscopic investigations and molecular docking study of (2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one using quantum chemical calculations Spectroscopic investigations and molecular docking study of (2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one using quantum chemical calculations](/preview/png/1401149.png)
• The FT-IR and FT-Raman spectra were reported.
• The vibrational wavenumbers were calculated by DFT method and discussed.
• First and second hyperpolarizabilities were calculated to determine the NLO property.
• Molecular docking studies show that the title compound exhibit inhibitory activity against lymphocyte-specific kinase.
In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of (2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one. The computations were performed at DFT level of theory to get the optimizedgeometry and vibrational wave numbers of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 83.85 times that of standard NLO material urea. From the MEP plot, the negative electrostatic potential regions are mainly localized over the carbonyl group, the phenyl rings and are possible sites for electrophilic attack. The positive regions are localized over all the hydrogen atoms and are possible sites for nucleophilic attack. The molecular docking results suggest that the compound might exhibit inhibitory activity against lymphocyte-specific kinase and may results in design of novel T-cell immunosuppressants.
Figure optionsDownload as PowerPoint slide
Journal: Journal of Molecular Structure - Volume 1120, 15 September 2016, Pages 317–326