کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1424598 | 986730 | 2012 | 9 صفحه PDF | دانلود رایگان |

Nanoparticle-based cancer therapeutics promises to improve drug delivery safety and efficacy. However, fabrication of consistent theranostic nanoparticles with high and controllable drug loading remains a challenge, primarily due to the cumbersome, multi-step synthesis processes conventionally applied. Here, we present a simple and highly controllable method for assembly of theranostic nanoparticles, which may greatly reduce batch-to-batch variation. The major components of this nanoparticle system include a superparamagnetic iron oxide nanoparticle (SPION), a biodegradable and pH-sensitive poly (beta-amino ester) (PBAE) copolymer, a chemotherapeutic agent doxorubicin (DOX). Here the polymer pre-loaded with drug is directly assembled to the surface of SPIONs forming a drug loaded nanoparticle (NP-DOX). NP-DOX demonstrated a high drug loading efficiency of 679 μg DOX per mg iron, sustained stability in cell culture media up to 7 days, and a strong r2 relaxivity of 146 mM− 1
• s− 1 for magnetic resonance imaging (MRI). The drug release analysis of NP-DOX showed fast DOX release at pH 5.5 and 6.4 (as in endosomal environment) and slow release at pH 7.4 (physiological condition), demonstrating pH-sensitive drug release kinetics. In vitro evaluation of NP-DOX efficacy using drug-resistant C6 glioma cells showed a 300% increase in cellular internalization at 24 h post-treatment and 65% reduction of IC50 at 72 h post-treatment when compared to free DOX. These nanoparticles could serve as a foundation for building smart theranostic formulations for sensitive detection through MRI and effective treatment of cancer by controlled drug release.
A simple and highly reproducible approach has been established to fabricate colloidally-stable theranostic nanoparticles with imaging capability, and controllable drug loading and release profiles.Figure optionsDownload high-quality image (157 K)Download as PowerPoint slide
Journal: Journal of Controlled Release - Volume 162, Issue 1, 20 August 2012, Pages 233–241