کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1445291 | 1509578 | 2015 | 10 صفحه PDF | دانلود رایگان |

Deformation dilatometry and semi-industrial extrusion were used to investigate the effect of different thermomechanical processing routes on the microstructure and mechanical properties of the low-alloy Mg alloys ZX10 (Mg–1Zn–0.3Ca) and ZX00 (Mg–0.5Zn–0.15Ca). It is shown that the deliberately adjusted formation of intermetallic particles beneficially influences dynamic recrystallization and grain growth, with the result of a fine-grained microstructure (grain size < 2 μm). The presence of unrecrystallized regions with its unfavorable influence on ductility and mechanical anisotropy can be controlled by the selection of an indirect extrusion mode. Meta-dynamic recrystallization generates almost fully recrystallized microstructures and hence the desired properties, which are characterized by high strength (yield strength ≈ 240 MPa), simultaneously high ductility (elongation to fracture ≈ 30%), and low structural and mechanical anisotropy. These properties are of great interest for light-weight applications and for deployment as biodegradable implants in medical technology.
Figure optionsDownload high-quality image (220 K)Download as PowerPoint slide
Journal: Acta Materialia - Volume 98, 1 October 2015, Pages 423–432