کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1446013 988596 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mechanical properties and hardening mechanism of Fe–Al–Ni single crystals containing NiAl precipitates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Mechanical properties and hardening mechanism of Fe–Al–Ni single crystals containing NiAl precipitates
چکیده انگلیسی

The microstructures and mechanical properties of Fe–23.0 Al–6.0 Ni (at.%) single crystals containing NiAl precipitates were investigated and the hardening mechanism due to the precipitates was discussed, focusing on the activated slip systems. When these alloys were slowly cooled to room temperature after homogenization at 1373 K, the NiAl phase with the B2 structure precipitated in the body-centered cubic (bcc) Fe–Al matrix, satisfying the cube-on-cube relationship with a small misfit strain. The single crystals containing the NiAl precipitates exhibited a high yield stress above 1 GPa at room temperature. In addition, the activated slip system and deformation behavior depended strongly on the loading axis. For instance, 〈1 1 1〉 slip, which is the primary slip for the bcc matrix, occurred at 〈1 4 9〉 and 〈0 0 1〉 orientations and the NiAl precipitates were sheared by the slip. A critical resolved shear stress of 〈1 1 1〉 slip in the NiAl phase was known to be extremely high, which led to strong precipitation hardening. On the other hand, at 〈5 5 7〉 and 〈0 1 1〉 orientations, 〈0 0 1〉 slip, which is the primary slip system for the NiAl precipitates, forcibly sheared the bcc Fe–Al matrix, also leading to strong hardening. Thus, in the Fe–Al–Ni alloys, the difference in the primary slip system between the bcc Fe–Al matrix and the NiAl precipitates resulted in extreme hardening. This hardening mechanism caused by the NiAl precipitates effectively increased the yield stress even at high temperatures. In fact, the crystals exhibited a high yield stress at ∼1 GPa up to 823 K.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 61, Issue 5, March 2013, Pages 1716–1725
نویسندگان
, , ,