کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1446631 | 988618 | 2012 | 10 صفحه PDF | دانلود رایگان |

In this study the influence of interrupted quenching (IQ) in the temperature range 150–250 °C for periods of 15–1080 s on artificial aging after long-term natural pre-aging was studied for the Al–Mg–Si alloy AA6061 by atom probe tomography, transmission electron microscopy, electrical resistivity and hardness measurements, and differential scanning calorimetry. Compared with a standard quenching procedure, the results showed that hardening kinetics and the age hardening response were enhanced for IQ at low temperatures but reduced at high temperatures. Quenched-in vacancies were shown to be of particular importance for the nucleation of precipitates occurring during IQ at the lower end of the temperature range, finally leading to the formation of a dense distribution of β″ during artificial aging. For standard water quenching and subsequent natural aging, nucleation is hindered by a low concentration of quenched-in vacancies in the matrix. IQ at high temperatures affects subsequent artificial aging via the formation of precipitates which do not contribute to hardening but consume a significant amount of solute.
Journal: Acta Materialia - Volume 60, Issue 11, June 2012, Pages 4496–4505