کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1447333 | 988642 | 2011 | 10 صفحه PDF | دانلود رایگان |

This paper is an attempt to discuss the relevance of the physical concepts used to describe the plastic flow behaviour of a wide class of nanograined metallic polycrystals, by critically analyzing recent experimental observations on nanograined Ni and Cu. The paper focuses on the description of the elastic–plastic transition, and of the strain rate sensitivity. Using the generally accepted assumption that plastic flow results from dislocation nucleation at grain boundaries, it is shown that two deformation regimes must be distinguished: a nucleation-controlled mechanism at low strain rates, and a combined nucleation and propagation mechanism at high strain rates. At low deformation rates, the average nucleation rate is determined either from knowledge of the stress–strain curve, or from analysis of creep or relaxation kinetics. The strain rate sensitivity is shown to be related to the effect of stress on the nucleation rate.
Journal: Acta Materialia - Volume 59, Issue 7, April 2011, Pages 2565–2574