کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1448443 | 988674 | 2009 | 5 صفحه PDF | دانلود رایگان |

Single-phase polycrystalline dual-element-filled skutterudites BaxCeyCo4Sb12 (0 < x < 0.4, 0 < y < 0.1) are synthesized by the melting–quenching–annealing and spark plasma sintering methods. The electrical conductivity, Seebeck coefficient, thermal conductivity and low-temperature Hall data of these compounds are reported. Our results suggest that there is essentially no difference in electrical transport properties between the dual-element-filled BaxCeyCo4Sb12 and single-element-filled BayCo4Sb12 systems. The Ba–Ce co-filling is more effective in lattice thermal conductivity reduction than Ba single filling in the temperature range of 300–850 K. Very low lattice thermal conductivity values less than 2.0 W m−1 K−1 are obtained at room temperature. Consequently, enhanced thermoelectric figure of merits (ZT) for these dual-element-filled CoSb3 skutterudites are achieved at elevated temperatures, in particular ZT = 1.26 at 850 K for Ba0.18Ce0.05Co4Sb12.02.
Journal: Acta Materialia - Volume 57, Issue 11, June 2009, Pages 3135–3139