کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1448672 988680 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum
چکیده انگلیسی

Atomistic simulations using the quasicontinuum method are performed to examine the mechanical behavior and underlying mechanisms of surface plasticity in nanocrystalline aluminum with a grain diameter of 7 nm deformed under wedge-like cylindrical contact. Two embedded-atom method potentials for Al, which mostly differ in their prediction of the generalized stacking and planar fault energies, and grain boundary (GB) energies, are used and characterized. The simulations are conducted on a randomly oriented microstructure with 〈1 1 0〉-tilt GBs. The contact pressure–displacement curves are found to display significant flow serration. We show that this effect is associated with highly localized shear deformation resulting from one of three possible mechanisms: (1) the emission of partial dislocations and twins emanating from the contact interface and GBs, along with their propagation and intersection through intragranular slip, (2) GB sliding and grain rotation and (3) stress-driven GB migration coupled to shear deformation. Marked differences in mechanical behavior are observed, however, as a function of the interatomic potential. We find that the propensity to localize the plastic deformation at GBs via interface sliding and coupled GB migration is greater in the Al material presenting the lowest predicted stacking fault energy and GB energy. This finding is qualitatively interpreted on the basis of impurity effects on plastic flow and GB-mediated deformation processes in Al.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 56, Issue 20, December 2008, Pages 6013–6026
نویسندگان
, ,