کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1552485 | 1513204 | 2016 | 14 صفحه PDF | دانلود رایگان |

• Silicon based quantum well (QW) solar cell’s electrical performance evaluated.
• Revised current-voltage equation for silicon based quantum well solar cell.
• Spectral response of nc-Si:H/a-Si:H quantum well solar cell modelled.
• Carrier lifetime must be high to improve a-Si:H solar cell efficiency using QWs.
The maximum performance of nc-Si:H/a-Si:H quantum well solar cell is theoretically evaluated by studying the spectral absorption of incident radiation with respect to the number of inserted nc-Si:H quantum well layers. Fundamental intrinsic properties of a-Si:H and nc-Si:H materials reported in literature have been used to evaluate the performance parameters. Enhanced spectral absorption is recorded due to insertion of nc-Si:H quantum well layers in the intrinsic region of a-Si:H solar cell. By inserting 50 QW layers of nc-Si:H in the intrinsic region of the a-Si:H solar cell, the short-circuit current density (JSC) increases by ∼100% as compared to the baseline whereas the open-circuit voltage (VOC) decreases by ∼38%. The decrease in VOC is explained on the basis of quasi-Fermi level separation under the illuminated state of solar cell. Theoretical maximum efficiency, having the combined effect of the increase in JSC and decrease in VOC, has increased by ∼24% in comparison with the baseline due to the use of QW as calculated using ideal carrier lifetime value. With a realistic carrier lifetime of the state-of-the-art a-Si:H solar cells, the addition of QWs do not yield any significant gain. From this study, it is concluded that a high carrier lifetime is required to gain a noteworthy benefit from the nc-Si:H/a-Si:H QWs.
Journal: Superlattices and Microstructures - Volume 97, September 2016, Pages 46–59