کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1553969 | 998764 | 2012 | 9 صفحه PDF | دانلود رایگان |

The Ti-doped ZnO (ZnO:Ti) thin films have been deposited on glass substrates by radio frequency (RF) reactive magnetron sputtering technique with different Ti doping concentrations. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited ZnO:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and fluorescence spectrophotometer. The XRD measurements revealed that all the films had hexagonal wurtzite type structure with a strong (100) preferential orientation and relatively weak (002), (101), and (110) peaks. It was found that the intensity of the (100) diffraction peaks was strongly dependent on the Ti doping concentration. And the full width at half-maximum (FWHM) of (002) diffraction peaks constantly changed at various Ti contents, which decreased first and then increased, reaching a minimum of about 0.378° at 1.43 at.% Ti. The morphologies of ZnO:Ti films with 1.43 at.% Ti showed a denser texture and better smooth surface. All the films were found to be highly transparent in the visible wavelength region with an average transmittance over 90%. Compared with Eg = 3.219 eV for pure ZnO film, all the doping samples exhibited a blue-shift of Eg. It can be attributed to the incorporation of Ti atoms and raising the concentration of carriers. Five emission peaks located at 412, 448, 486, 520, and 550 nm were observed from the photoluminescence spectra measured at room temperature and the origin of these emissions was discussed.
► ZnO:Ti films with (100) preferred orientation were prepared at different Ti concentrations.
► The FWHM of (002) diffraction peaks reach a minimum of about 0.378° at 1% Ti.
► Compared with Eg = 3.219 eV for pure ZnO film, all the doping samples exhibit a blue-shift of Eg.
► Intense violet and blue-green luminescence peaks are observed from the ZnO thin films.
Journal: Superlattices and Microstructures - Volume 52, Issue 4, October 2012, Pages 765–773