کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
169724 | 458036 | 2012 | 16 صفحه PDF | دانلود رایگان |

Quasi-steady burning and extinction of droplets are of interest from both fundamental and application viewpoints. The latter is related to combustor performance and fire safety issues in reduced gravity environments. Influences of diluent in the atmosphere on isolated droplet combustion characteristics including extinction provide insights to fire extinguishment phenomena and the effectiveness of various diluents as fire suppressants. Extinction of pure methanol and methanol–water droplets ranging from 1.5 to 7 mm size, for varying levels of ambient carbon-dioxide, helium and oxygen concentration – burning in a quiescent microgravity environment were studied numerically to compare the effectiveness of fire suppressant diluent selection and determining the limiting oxygen index. The results show distinct regimes of diffusive and radiative extinction. The transition from diffusive to radiative extinction is strongly influenced by the ambient diluent selection, especially by carbon dioxide concentration. Results for helium as the diluent showed increased burning rate and extinction due to diffusive heat loss. An “extinction characteristic” correlation is proposed that depends on burning rate, ambient diffusivity and flame standoff ratio. Recent methanol droplet experiments conducted over a wide range of operating conditions onboard the International Space Station were found to yield results that agree well with the proposed “extinction characteristic” correlation.
Journal: Combustion and Flame - Volume 159, Issue 10, October 2012, Pages 3208–3223