کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1702790 | 1012354 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-fidelity shape optimization of hydraulic turbine runner blades using a multi-objective mesh adaptive direct search algorithm
ترجمه فارسی عنوان
بهینه سازی شکل چند وجهی پره های دندانه دار توربین هیدرولیکی با استفاده از یک الگوریتم جستجوی مستقیم تطبیقی مش چند هدفه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
چکیده انگلیسی
A robust multi-fidelity design optimization methodology has been developed to integrate advantages of high- and low-fidelity analyses, aiming to help designers reach more efficient turbine runners within reasonable computational time and cost. An inexpensive low-fidelity inviscid flow solver handles most of the computational burden by providing data to the optimizer by evaluating objective functions and constraint values in the low-fidelity phase. An open-source derivative-free optimizer, NOMAD, explores the search space, using the multi-objective mesh adaptive direct search optimization algorithm. A versatile filtering algorithm is in charge of connecting low- and high-fidelity phases by selecting among all feasible solutions a few promising solutions which are transferred to the high-fidelity phase. In the high-fidelity phase, a viscous flow solver is used outside the optimization loop to accurately evaluate filtered candidates. High-fidelity analyses results are used to recalibrate the low-fidelity optimization problem. The developed methodology has demonstrated its ability to efficiently redesign a Francis turbine blade for new operating conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 40, Issue 2, 15 January 2016, Pages 1650-1668
Journal: Applied Mathematical Modelling - Volume 40, Issue 2, 15 January 2016, Pages 1650-1668
نویسندگان
S. Bahrami, C. Tribes, C. Devals, T.C. Vu, F. Guibault,