کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1707040 | 1012494 | 2009 | 11 صفحه PDF | دانلود رایگان |

This paper considers a number-dependent replacement policy for a system with two failure types that is replaced at the nth type I (minor) failure or the first type II (catastrophic) failure, whichever occurs first. Repair or replacement times are instantaneous but spare/replacement unit delivery lead times are random. Type I failures are repaired at zero cost since preventive maintenance is performed continuously. Type II failures, however, require costly system replacement. A model is developed for the average cost per unit time based on the stochastic behavior of the system and replacement, storage, and downtime costs. The cost-minimizing policy is derived and discussed. We show that the optimal number of type I failures triggering replacement is unique under certain conditions. A numerical example is presented and a sensitivity analysis is performed.
Journal: Applied Mathematical Modelling - Volume 33, Issue 3, March 2009, Pages 1708–1718