کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1714729 1519959 2013 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی هوافضا
پیش نمایش صفحه اول مقاله
Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations
چکیده انگلیسی
The present study examines the role of transverse waves and hydrodynamic instabilities mainly, Richtmyer-Meshkov instability (RMI) and Kelvin-Helmholtz instability (KHI) in detonation structure using two-dimensional high-resolution numerical simulations of Euler equations. To compare the numerical results with those of experiments, Navier-Stokes simulations are also performed by utilizing the effect of diffusion in highly irregular detonations. Results for both moderate and low activation energy mixtures reveal that upon collision of two triple points a pair of forward and backward facing jets is formed. As the jets spread, they undergo Richtmyer-Meshkov instability. The drastic growth of the forward jet found to have profound role in re-acceleration of the detonation wave at the end of a detonation cell cycle. For irregular detonations, the transverse waves found to have substantial role in propagation mechanism of such detonations. In regular detonations, the lead shock ignites all the gases passing through it, hence, the transverse waves and hydrodynamic instabilities do not play crucial role in propagation mechanism of such regular detonations. In comparison with previous numerical simulations present simulation using single-step kinetics shows a distinct keystone-shaped region at the end of the detonation cell.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Astronautica - Volume 91, October–November 2013, Pages 263-282
نویسندگان
, , ,