کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1715037 | 1519965 | 2013 | 7 صفحه PDF | دانلود رایگان |

In many practical situations it is impossible to measure directly thermal and thermokinetic properties of analyzed composite materials. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurements is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The general method of iterative regularization is concerned with application to the estimation of materials properties. The objective of this paper is to estimate thermal and thermokinetic properties of advanced materials using the approach based on inverse methods. An experimental–computational system is presented for investigating the thermal and kinetics properties of composite materials by methods of inverse heat transfer problems and which is developed at the Thermal Laboratory of Department Space Systems Engineering, of Moscow Aviation Institute (MAI). The system is aimed at investigating the materials in conditions of unsteady contact and/or radiation heating over a wide range of temperature changes and heating rates in a vacuum, air and inert gas medium.
► The thermal and thermokinetic properties of materials are estimated by inverse problems approach.
► A deviation of calculated and experimental temperature did not exceed 42 K.
► The errors in coordinates of thermosensors have the main influence on the accuracy of this problem.
Journal: Acta Astronautica - Volume 85, April–May 2013, Pages 113–119