کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1715936 | 1519987 | 2011 | 8 صفحه PDF | دانلود رایگان |

Nuclear Electric Propulsion (NEP) is a technology conceptually proposed since the 1940s by E. Stuhlinger in Germany. The JIMO mission originally planned by NASA in the early 2000s produced at least two designs of ion thrusters fed by a 20–30 kW nuclear powerplant. When compared to conventional (chemical) propulsion, the major advantage of NEP in the JIMO context was recognized to be the much higher Isp (lab-tested at up to 15,000 s) and the capability for sustained power generation, up to 8–10 years when derated to Isp about 8000 s.The goal of this paper is to show that current or near term NEP technology enables missions far beyond our immediate interplanetary backyard. In fact, by extending the semi-analytical approach used by Stuhlinger, with reasonable ratios α≡power/mass of the propulsion system (i.e., 0.1– 0.4 kW/kg), missions to the Kuiper Belt (40 AU and beyond) and even the so-called FOCAL mission (at 540 AU) become feasible with an attractive payload fraction and in times of order 10–15 years.Further results regarding missions to Sedna’s perihelion/aphelion, and to Oort’s cloud will also be presented, showing the constraints affecting their feasibility and mass budget.
Journal: Acta Astronautica - Volume 68, Issues 7–8, April–May 2011, Pages 1193–1200