کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1716614 | 1520010 | 2009 | 5 صفحه PDF | دانلود رایگان |

Robotic landers serve vital reconnaissance roles in the exploration of planetary surfaces, but are constrained by deliverable payload size and environment survivability. Although the Mars exploration rovers (MER) have shown incredible survivability, their solar power source limits the science output per sol. Future landers will be larger, and will incorporate more sophisticated data-collection and analysis packages, which will likely bring with them an increased demand for power. Anticipating this demand, we propose an innovative hybrid power system combining a primary radioisotope thermoelectric generator (RTG) with a secondary alkaline fuel cell. This combination provides the opportunity to utilize more effectively the energy produced by the RTG, to produce and store O2 and H2 via electrolysis of melted ice, and use this obtained O2 and H2 in a variety of ways, including as fuel for a regenerative fuel cell. This hybrid system has applications ranging from planetary rovers and deep-space probes to human habitats.
Journal: Acta Astronautica - Volume 64, Issues 9–10, May–June 2009, Pages 1006–1010