کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1716821 1520015 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Space motion sickness: The sensory motor controls and cardiovascular correlation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی هوافضا
پیش نمایش صفحه اول مقاله
Space motion sickness: The sensory motor controls and cardiovascular correlation
چکیده انگلیسی

Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377–399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS’ susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory–motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4–7) (2007) 313–321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS’ analysis. In this paper we present the case for a strong relationship between sensory–motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms.MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377–399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4–7) (2007) 313–321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma impacts on core regulatory sensory motor and cognitive mechanisms. Static postural analysis provides specific central neurophysiological markers that can reliably identify PDS occurrence among classic peripheral musculoskeletal and spinal data [C. Landrock, P.A. Souvestre, Static postural analysis: a methodology to assess gravity related sensory motor controls’ status for astronauts, 2006-01-2298, 36th SAE-ICES].Many astronauts experience PFOI and recent research has implicated altered autonomic cardiovascular regulation caused by microgravity. HRV measurements have been used to determine if some pre-flight autonomic indicators relating to PFOI may exist by differentiating parasympathetic and sympathetic activity.ResultsThis review suggests a new approach to SMS mitigation based on specific neurophysiological assessment criteria. While SMS may not be a “unique diagnosis”, it should be treated as result, or symptom of, the condition space adaptation syndrome (SAS), which can be shown to be a unique diagnosis. This methodology can identify and measure brain functional status in specific areas during pre-flight and post-flight examinations. This could provide further understanding on why, how and when SMS and PFOI might occur in Astronauts, and lead to criteria that predict susceptibility to SMS. An additional test component is presented that relates to using static central sensory–motor data towards understanding SMS and OI occurrence. Recent investigations indicate relationship between HRV autonomic indicators with Motion Sickness [B. Cheung, K. Hoffer, R. Heskin, A. Smith, Physiological and behavioral responses to an exposure to pitch illusion in the simulator, Aviation Space, 2004; Y. Yokota, M. Aoki, K. Mizuta, Y. Ito, N. Isu, Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects, Acta Oto-laryngological, 2005]. It is found that astronauts with lower sympatho-vagal balance and higher supine parasympathetic activity pre-flight may present with PFOI indicators. Not only HRV provides information on autonomic regulation, but HRV pattern appears to be chaotic and/or fractal. Beat-by-beat HRV yields fractal dimension of the cardiovascular control system [C.K. Peng, J. Mistus, J.M. Hausdorff, S. Havlin, H.E. Stanley, A.L. Goldberger, Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Physics Review Letters 70 (1999) 1343–1346]. Similar properties can be found in other physiological signals such as breathing intervals and gait pattern [N. Scafetta, R. Moon, B.J. West, Physiological signals and their fractal response to stress conditions, environmental changes and neurodegenerative diseases, in: Proceedings of The 25th Army Science Conference (ASC), Orlando, Florida, November 27–30, 2006].ConclusionsA strong correlation between unmitigated SMS and PFOI related symptoms in astronauts has been presented. There is also strong correlation with PDS related symptoms, which can be accurately identified, measured, and monitored via a specific ocular-vestibular-postural monitoring system along with relevant clinical data. Along with the associated autonomic interactions detected by HRV, the fractal nature of the HRV data may provide useful information on the nature and complexity of central neural controls in relation to physiological [A.P. Blaber, R.L. Bondar, R. Freeman, Coarse grained spectral analysis of HR and BP variability in patients with autonomic failure, American Journal of Physiology 271 (1996) H1555–H1564] and mental stress [Y. Hoshikawa, Y. Yamamoto, Effects of Stroop color-word conflict test on the autonomic nervous system responses, American Journal of Physiology, 1997]. The data presented provide strong evidence that proper biomedical assessment methodologies employed with appropriate technology can lead to better understanding Astronauts’ pre-flight and post-flight biomedical status, necessary to further human exploration in Space on a safe and successful path.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Astronautica - Volume 63, Issues 7–10, October–November 2008, Pages 745–757
نویسندگان
, , ,