کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
173283 458585 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient meta-modelling of complex process simulations with time–space-dependent outputs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Efficient meta-modelling of complex process simulations with time–space-dependent outputs
چکیده انگلیسی

Process simulations can become computationally too complex to be useful for model-based analysis and design purposes. Meta-modelling is an efficient technique to develop a surrogate model using “computer data”, which are collected from a small number of simulation runs. This paper considers meta-modelling with time–space-dependent outputs in order to investigate the dynamic/distributed behaviour of the process. The conventional method of treating temporal/spatial coordinates as model inputs results in dramatic increase of modelling data and is computationally inefficient. This paper applies principal component analysis to reduce the dimension of time–space-dependent output variables whilst retaining the essential information, prior to developing meta-models. Gaussian process regression (also termed kriging model) is adopted for meta-modelling, for its superior prediction accuracy when compared with more traditional neural networks. The proposed methodology is successfully validated on a computational fluid dynamic simulation of an aerosol dispersion process, which is potentially applicable to industrial and environmental safety assessment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 35, Issue 3, 8 March 2011, Pages 502–509
نویسندگان
, , , ,