کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
173283 | 458585 | 2011 | 8 صفحه PDF | دانلود رایگان |

Process simulations can become computationally too complex to be useful for model-based analysis and design purposes. Meta-modelling is an efficient technique to develop a surrogate model using “computer data”, which are collected from a small number of simulation runs. This paper considers meta-modelling with time–space-dependent outputs in order to investigate the dynamic/distributed behaviour of the process. The conventional method of treating temporal/spatial coordinates as model inputs results in dramatic increase of modelling data and is computationally inefficient. This paper applies principal component analysis to reduce the dimension of time–space-dependent output variables whilst retaining the essential information, prior to developing meta-models. Gaussian process regression (also termed kriging model) is adopted for meta-modelling, for its superior prediction accuracy when compared with more traditional neural networks. The proposed methodology is successfully validated on a computational fluid dynamic simulation of an aerosol dispersion process, which is potentially applicable to industrial and environmental safety assessment.
Journal: Computers & Chemical Engineering - Volume 35, Issue 3, 8 March 2011, Pages 502–509