کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
173399 458592 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data reconciliation and gross error diagnosis based on regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Data reconciliation and gross error diagnosis based on regression
چکیده انگلیسی

In this article we show that the linear reconciliation problem can be represented by a standard multiple linear regression model. The appropriate criteria for redundancy, determinability and gross error detection are shown to follow in a straightforward manner from the standard theory of linear least squares. The regression approach suggests a natural measure of the redundancy of an observation. This approach yields also an explicit expression for the probability of detecting a gross error in an observation, which depends on its redundancy. The criterion for the detection of gross errors derived from the regression model is shown to yield the maximum probability of correct outlier identification. We consider two examples analyzed in the literature to demonstrate how our approach allows a complete understanding of the main data features.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 33, Issue 1, 13 January 2009, Pages 65–71
نویسندگان
, ,