کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1754144 1522639 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی اقتصادی
پیش نمایش صفحه اول مقاله
Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)
چکیده انگلیسی

Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200 bar (1 bar = 105 Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16 °C, 50 bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (ρpore) with sizes (r) 1 × 105 ≥ r ≥ 1 × 104 Å (ρpore ≈ 0.489 g/cm3) as well as in small pores with size between 30 and 300 Å (ρpore ≈ 0.671 g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (ρCO2) under similar thermodynamic conditions (ρCO2 ≈ 0.15 g/cm3). At the same time, in the intermediate size pores with r ≈ 1000 Å the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100 bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (ρpore / ρCO2 ≈ 0.6). Neutron scattering from the Bulli 4 coal did not show any significant variation with pressure, a phenomenon which we assign to the extremely small amount of porosity of this coal in the pore size range between 35 and 100,000 Å.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Coal Geology - Volume 77, Issues 1–2, 7 January 2009, Pages 69–79
نویسندگان
, , , , ,