کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1760248 1019581 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم آکوستیک و فرا صوت
پیش نمایش صفحه اول مقاله
Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques
چکیده انگلیسی
To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasound in Medicine & Biology - Volume 42, Issue 4, April 2016, Pages 989-998
نویسندگان
, , ,