کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1781396 1022276 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The present-day flux of large meteoroids on the lunar surface—A synthesis of models and observational techniques
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فیزیک زمین (ژئو فیزیک)
پیش نمایش صفحه اول مقاله
The present-day flux of large meteoroids on the lunar surface—A synthesis of models and observational techniques
چکیده انگلیسی

Monitoring the lunar surface for impacts is a highly rewarding approach to study small asteroids and large meteoroids encountering the Earth–Moon System. The various effects of meteoroids impacting the Moon are described and results from different detection and study techniques are compared. While the traditional statistics of impact craters allow us to determine the cumulative meteoroid flux on the lunar surface, the recent successful identification of fresh craters in orbital imagery has the potential to directly measure the cratering rate of today. Time-resolved recordings, e.g., seismic data of impacts and impact flash detections clearly demonstrate variations of the impact flux during the lunar day. From the temporal/spatial distribution of impact events, constraints can be obtained on the meteoroid approach trajectories and velocities. The current monitoring allows us to identify temporal clustering of impacts and to study the different meteoroid showers encountering the Earth–Moon system. Though observational biases and deficiencies in our knowledge of the scaling laws are severe, there appears to be an order-of-magnitude agreement in the observed flux within the error limits. Selenographic asymmetries in the impact flux (e.g., for equatorial vs. polar areas) have been predicted. An excess of impacts on the lunar leading hemisphere can be demonstrated in current data. We expect that future missions will allow simultaneous detections of seismic events and impact flashes. The known locations and times of the flashes will allow us to constrain the seismic solutions. While the numbers of flash detections are still limited, coordinated world-wide observations hold great potential for exploiting this observation technique. The potential for identification of fresh craters in high-resolution orbital image data has just barely been tapped, but should improve significantly with the LRO extended mission.


► Identifying new craters in orbital images enables estimating today's cratering rate.
► Meteor showers dominate 0.1–1 kg range and explain evening/morning assymetry.
► An impact excess on lunar leading hemisphere can be demonstrated from current data.
► Spatio-temporal impact events may lead to meteoroid trajectories, velocities.
► Though scaling laws biases an order of magnitude agreement is in inferred flux.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Planetary and Space Science - Volume 74, Issue 1, December 2012, Pages 179–193
نویسندگان
, , , , , , , , , , , ,