کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1781810 1022303 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Volcaniclastic habitats for early life on Earth and Mars: A case study from ∼3.5 Ga-old rocks from the Pilbara, Australia
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فیزیک زمین (ژئو فیزیک)
پیش نمایش صفحه اول مقاله
Volcaniclastic habitats for early life on Earth and Mars: A case study from ∼3.5 Ga-old rocks from the Pilbara, Australia
چکیده انگلیسی

Within the context of present and future in situ missions to Mars to investigate its habitability and to search for traces of life, we studied the habitability and traces of past life in ∼3.5 Ga-old volcanic sands deposited in littoral environments an analogue to Noachian environments on Mars. The environmental conditions on Noachian Mars (4.1–3.7 Ga) and the Early Archaean (4.0–3.3 Ga) Earth were, in many respects, similar: presence of liquid water, dense CO2 atmosphere, availability of carbon and bio-essential elements, and availability of energy. For this reason, information contained in Early Archaean terrestrial rocks concerning habitable conditions (on a microbial scale) and traces of past life are of relevance in defining strategies to be used to identify past habitats and past life on Mars.One such example is the 3.446 Ga-old Kitty’s Gap Chert in the Pilbara Craton, NW. Australia. This formation consists of volcanic sediments deposited in a coastal mudflat environment and is thus a relevant analogue for sediments deposited in shallow water environments on Noachian Mars. Two main types of habitat are represented, a volcanic (lithic) habitat and planar stabilized sediment surfaces in sunlit shallow waters. The sediments hosted small (<1 μm in size) microorganisms that formed colonies on volcanic particle surfaces and in pore waters within the volcanic sediments, as well as biofilms on stabilised sediment surfaces. The microorganisms included coccoids, filaments and rare rod-shaped organisms associated with microbial polymer (EPS). The preserved microbial community was apparently dominated by chemotrophic organisms but some locally transported filaments and filamentous mat fragments indicate that possibly photosynthetic mats formed nearby. Both microorganisms and sediments were silicified during very early diagenesis.There are no macroscopic traces of fossilised life in these volcanic sediments and sophisticated instrumentation and specialized sample preparation techniques are required to establish the biogenicity and syngenicity of the traces of past life. The fact that the traces of life are cryptic, and the necessity of using sophisticated instrumentation, reinforces the challenges and difficulties of in situ robotic missions to identify past life on Mars. We therefore recommend the return of samples from Mars to Earth for a definitive search for traces of life.

Research highlights
► Silicified ∼3.5 Ga old shallow water volcaniclastic sediments from the “Kitty's Gap Chert” Formation in the Pilbara of Australia are good analogues for water-lain volcanic detritus on Noachian Mars.
► The “Kitty's Gap” sediments contain micro-habitats that include volcanic particle surfaces and pore spaces within the volcanic sediments, as well as a stabilised sediment surface exposed to sunlight.
► Fossil (silicified, carbonaceous) traces of life within these habitats are submicron in size and multidisciplinary investigations using sophisticated instrumentation are necessary to verify their biogenicity and syngenicity.
► Such investigations cannot be undertaken by the in situ instrumentation on future Mars missions and therefore the search for life in martian materials needs to be undertaken in specialised laboratories on materials returned to Earth from Mars.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Planetary and Space Science - Volume 59, Issue 10, August 2011, Pages 1093–1106
نویسندگان
, , , , , , , , , , , ,