کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
184965 | 459586 | 2014 | 7 صفحه PDF | دانلود رایگان |
Rechargeable thin-film batteries have recently become the topic of widespread research for use as efficient energy storage devices. Spinel Li4Ti5O12 has been considered as one of the most prospective anode materials for Li-ion batteries because of its excellent reversibility and long cycle life. We report here the sol–gel synthesis and coating preparation of spinel thin-film Li4Ti5O12 electrodes for Li-ion microbatteries using lithium ethoxide produced in situ that reacts with titanium alkoxide to produce the precursor solution without particle precipitation. This synthesis procedure reduces the thermal treatment to obtain a pure phase at only 700 °C and 15 minutes. The physical and structural characterization of the 300 nm Li4Ti5O12 coatings shows a very homogeneous distribution of elements and a pure spinel phase. Galvanostatic discharge-charge tests indicate maximum discharge capacities of 152 mA h g−1 when the material is treated at 700 °C for 15 minutes.
Journal: Electrochimica Acta - Volume 149, 10 December 2014, Pages 293–299