کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
185543 459599 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Three-dimensional Conducting Polymer Films for Pt-free Counter Electrodes in Quasi-solid-state Dye-sensitized Solar Cells
ترجمه فارسی عنوان
سه بعدی فیلم های پلیمری انجام شده برای الکترودهای شمارنده بدون پت در سلول های خورشیدی حساسیت شده به رنگ نیمه جامد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی

Three-dimensional (3D) poly(3,4-ethylenedioxythiophene) (PEDOT) films were demonstrated as an efficient Pt-free catalyst in dye-sensitized solar cells (DSSCs). The 3D PEDOT films were fabricated by the deposition of a polystyrene (PS) bead (diameter = 1 μm) monolayer on fluorine-doped tin oxide (FTO) glass, followed by electrochemical polymerization (EP) of ethylenedioxythiophene (EDOT) monomer. For comparison, a flat PEDOT film and Pt counter electrodes were additionally prepared by solution casting polymerization (SCP) and the thermal reduction of a spin-coated H2PtCl6 solution, respectively. When these films were implemented as counter electrodes in quasi-solid-state DSSCs with a nanogel electrolyte, the cell efficiency of the 3D PEDOT film prepared by EP for 30 sec reached 5.05%, which is higher than those of the flat PEDOT (4.11%) and Pt counter electrode (4.59%). The improved efficiency of the 3D PEDOT-based cell is attributed to its higher electrocatalytic performance and improved light reflectance, as determined by cyclic voltammogram (CV), incident photon-to-current efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analyses.

Three-dimensional (3D) poly(3,4-ethylenedioxythiophene) (PEDOT) films with a higher catalytic activity, larger surface area, and improved light reflectance were synthesized directly on a FTO substrate. The efficiency of quasi-solid-state dye-sensitized solar cell with 3D PEDOT film reached 5.05%, which is higher than that of Pt-based cell (4.59%).Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 137, 10 August 2014, Pages 34–40
نویسندگان
, , , , ,