کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1904618 1534650 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1–AMPK signaling and autophagy
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1–AMPK signaling and autophagy
چکیده انگلیسی


• We examined the effect of cardiac PTEN deletion on heart function;
• PTEN deletion leads to cardiac geometric and contractile defect;
• The detrimental effect of PTEN deletion was related to loss of Pink1–AMPK signaling;

Phosphatase and tensin homolog (PTEN) deleted from chromosome 10 has been implicated in the maintenance of cardiac homeostasis although the underlying mechanism(s) remains elusive. We generated a murine model of cardiomyocyte-specific knockout of PTEN to evaluate cardiac geometry and contractile function, as well as the effect of metformin on PTEN deficiency-induced cardiac anomalies, if any. Cardiac histology, autophagy and related signaling molecules were evaluated. Cardiomyocyte-specific PTEN deletion elicited cardiac hypertrophy and contractile anomalies (echocardiographic and cardiomyocyte contractile dysfunction) associated with compromised intracellular Ca2 + handling. PTEN deletion-induced cardiac hypertrophy and contractile anomalies were associated with dampened phosphorylation of PTEN-inducible kinase 1 (Pink1) and AMPK. Interestingly, administration of AMPK activator metformin (200 mg/kg/d, in drinking H2O for 4 weeks) rescued against PTEN deletion-induced geometric and functional defects as well as interrupted autophagy and autophagic flux in the heart. Moreover, metformin administration partially although significantly attenuated PTEN deletion-induced accumulation of superoxide. RNA interference against Pink1 in H9C2 myoblasts overtly increased intracellular ATP levels and suppressed AMPK phosphorylation, confirming the role of AMPK as a downstream target for PTEN–Pink1. Further scrutiny revealed that activation of AMPK and autophagy using metformin and rapamycin, respectively, rescued against PTEN deletion-induced mechanical anomalies with little additive effect. These data demonstrated that cardiomyocyte-specific deletion of PTEN leads to the loss of Pink1–AMPK signaling, development of cardiac hypertrophy and contractile defect. Activation of AMPK rescued against PTEN deletion-induced cardiac anomalies associated with restoration of autophagy and autophagic flux. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease - Volume 1852, Issue 2, February 2015, Pages 290–298
نویسندگان
, , , , , , ,