کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1904878 | 1534677 | 2012 | 17 صفحه PDF | دانلود رایگان |

Oogenesis is a complex process regulated by a vast number of intra- and extra-ovarian factors. Oogonia, which originate from primordial germ cells, proliferate by mitosis and form primary oocytes that arrest at the prophase stage of the first meiotic division until they are fully-grown. Within primary oocytes, synthesis and accumulation of RNAs and proteins throughout oogenesis are essential for oocyte growth and maturation; and moreover, crucial for developing into a viable embryo after fertilization. Oocyte meiotic and developmental competence is gained in a gradual and sequential manner during folliculogenesis and is related to the fact that the oocyte grows in interaction with its companion somatic cells. Communication between oocyte and its surrounding granulosa cells is vital, both for oocyte development and for granulosa cells differentiation. Oocytes depend on differentiated cumulus cells, which provide them with nutrients and regulatory signals needed to promote oocyte nuclear and cytoplasmic maturation and consequently the acquisition of developmental competence.The purpose of this article is to summarize recent knowledge on the molecular aspects of oogenesis and oocyte maturation, and the crucial role of cumulus–cell interactions, highlighting the valuable contribution of experimental evidences obtained in animal models. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
► Oocyte development depends on several factors expressed pre- and post-natally.
► Oocyte accumulation of transcripts and proteins is essential for oocyte competence.
► EGF-like factors induce cumulus expansion and signaling during oocyte maturation.
► A drop in oocyte cAMP levels post LH stimulus accompanies meiotic resumption.
► Oocyte regulates cumulus cell differentiation and function.
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease - Volume 1822, Issue 12, December 2012, Pages 1896–1912